Système Golden Easy PCR (avec colorant)

Système de réaction PCR simple à deux composants.

Chat. Non Taille d'emballage
4993003 250 U (2,5 U/μl)
4993004 500 U (2,5 U/μl)

Les détails du produit

Exemple expérimental

FAQ

Étiquettes de produit

Caractéristiques

■ Bonne stabilité : la formule unique rend l'ensemble du système de réaction très stable. Le système contient les composants nécessaires à une amplification PCR efficace, tels que l'ADN polymérase thermostable, les dNTP, le MgCl2 et une solution tampon, ainsi qu'une variété de stabilisants spéciaux, qui augmentent considérablement la stabilité de la polymérase et du dNTP à température normale et 4℃.
■ Rapide et simple : opération simple et rapide. Mélangez simplement les deux composants en proportion, puis ajoutez des matrices et des amorces pour configurer la réaction, en évitant les étapes fastidieuses d'ajout de divers composants de réaction PCR un par un. Minimisez les erreurs d'échantillonnage et la contamination croisée, avec peu d'erreurs entre les différents lots, et peut être utilisé dans des expériences semi-quantitatives.
■ Large application et haute sensibilité.
■ Chaque système de réaction contient des colorants et l'électrophorèse peut être effectuée directement après les étapes de PCR afin que la procédure soit rapide et économique.

Contrôle de qualité

La pureté de la SDS-PAGE est supérieure à 99 % ; Aucune activité de nucléase exogène n'est détectée ; Un seul gène du génome humain pourrait être amplifié efficacement ; Aucun changement d'activité significatif lorsqu'il est conservé à température ambiante pendant une semaine.

Stabilité

Le produit utilisant le système PCR simple à deux composants peut être conservé à 4°C pendant un mois sans changement d'activité évident.

Flux de travail

Étape 1 : Mélangez les différents composants en proportion.

Étape 2 : Démarrez l'expérience immédiatement.

Etape 3 : Electrophorèse directe pour le Mix avec colorants.

Étape 4 : Résultats expérimentaux satisfaisants.

Final Reaction Concentration:

Tous les produits peuvent être personnalisés pour ODM/OEM. Pour plus de détails,s'il vous plaît cliquez sur Service personnalisé (ODM/OEM)


  • Précédent:
  • Prochain:

  • product_certificate04 product_certificate01 product_certificate03 product_certificate02
    ×
    Experimental Example Le système PCR simple à deux composants (Golden Easy PCR System) est appliqué. Le système de réaction est de 50 l (Si les systèmes de réaction sont différents, veuillez augmenter ou diminuer proportionnellement la quantité de composants de réaction se référant à ce système).
    Experimental Example Concentration de réaction finale
    Q : Pas de bandes d'amplification

    Modèle A-1

    ■ La matrice contient des impuretés protéiques ou des inhibiteurs de Taq, etc. ——Purifiez la matrice d'ADN, éliminez les impuretés protéiques ou extrayez l'ADN matrice avec des kits de purification.

    ■ La dénaturation de la matrice n'est pas complète ——Augmentez de manière appropriée la température de dénaturation et prolongez le temps de dénaturation.

    ■ Dégradation du modèle ——Repréparez le modèle.

    A-2 Apprêt

    ■ Mauvaise qualité des amorces —— Re-synthétiser l'amorce.

    ■ Dégradation des amorces ——Aliquoter les amorces à haute concentration dans un petit volume pour la conservation. Éviter les congélations et décongélations multiples ou la cryoconservation à 4°C à long terme.

    ■ Conception incorrecte des amorces (par exemple, longueur d'amorce insuffisante, dimère formé entre les amorces, etc.) -Reconception des amorces (éviter la formation de dimère d'amorce et de structure secondaire)

    A-3 mg2+concentration

    ■ mg2+ la concentration est trop faible ——Augmentez correctement Mg2+ concentration : Optimiser le Mg2+ concentration par une série de réactions de 1 mM à 3 mM avec un intervalle de 0,5 mM pour déterminer le Mg optimal2+ concentration pour chaque matrice et amorce.

    A-4 Température de recuit

    ■ La température de recuit élevée affecte la liaison de l'amorce et de la matrice. ——Réduire la température de recuit et optimiser la condition avec un gradient de 2°C.

    A-5 Temps de prolongation

    ■ Durée d'extension courte——Augmente la durée d'extension.

    Q : Faux positif

    Phénomènes : Les échantillons négatifs montrent également les bandes de séquence cible.

    A-1 Contamination de la PCR

    ■ Contamination croisée de la séquence cible ou des produits d'amplification —— Veillez à ne pas pipeter l'échantillon contenant la séquence cible dans l'échantillon négatif ou à ne pas les renverser hors du tube de centrifugation. Les réactifs ou l'équipement doivent être autoclavés pour éliminer les acides nucléiques existants, et l'existence d'une contamination doit être déterminée par des expériences de contrôle négatif.

    ■ Contamination des réactifs ——Aliquoter les réactifs et conserver à basse température.

    A-2 Premierr

    ■ mg2+ la concentration est trop faible ——Augmentez correctement Mg2+ concentration : Optimiser le Mg2+ concentration par une série de réactions de 1 mM à 3 mM avec un intervalle de 0,5 mM pour déterminer le Mg optimal2+ concentration pour chaque matrice et amorce.

    ■ Conception d'amorce incorrecte et la séquence cible présente une homologie avec la séquence non cible. —— Re-conception des amorces.

    Q : Amplification non spécifique

    Phénomènes : Les bandes d'amplification PCR ne correspondent pas à la taille attendue, qu'elles soient grandes ou petites, ou parfois des bandes d'amplification spécifiques et des bandes d'amplification non spécifiques se produisent.

    A-1 Apprêt

    ■ Mauvaise spécificité d'amorce

    ——Amorce de refonte.

    ■ La concentration d'amorce est trop élevée ——Augmentez correctement la température de dénaturation et prolongez le temps de dénaturation.

    A-2 mg2+ concentration

    ■ Le magnésium2+ la concentration est trop élevée ——Réduire correctement la concentration de Mg2+ : Optimiser la concentration de Mg2+ concentration par une série de réactions de 1 mM à 3 mM avec un intervalle de 0,5 mM pour déterminer le Mg optimal2+ concentration pour chaque matrice et amorce.

    A-3 Polymérase thermostable

    ■ Quantité d'enzyme excessive ——Réduire la quantité d'enzyme de manière appropriée à des intervalles de 0,5 U.

    A-4 Température de recuit

    ■ La température de recuit est trop basse ——Augmentez la température de recuit de manière appropriée ou adoptez la méthode de recuit en deux étapes

    Cycles de PCR A-5

    ■ Trop de cycles PCR ——Réduisez le nombre de cycles PCR.

    Q : Bandes inégales ou frottis

    A-1 Apprêt——Mauvaise spécificité ——Re-concevoir l'amorce, changer la position et la longueur de l'amorce pour améliorer sa spécificité; ou effectuer une PCR nichée.

    A-2 ADN modèle

    ——La matrice n'est pas pure ——Purifiez la matrice ou extrayez l'ADN avec des kits de purification.

    A-3 mg2+ concentration

    ——Mg2+ la concentration est trop élevée ——Réduire correctement le Mg2+ concentration : Optimiser le Mg2+ concentration par une série de réactions de 1 mM à 3 mM avec un intervalle de 0,5 mM pour déterminer le Mg optimal2+ concentration pour chaque matrice et amorce.

    A-4 dNTP

    ——La concentration de dNTP est trop élevée ——Réduire la concentration de dNTP de manière appropriée

    A-5 Température de recuit

    ——Température de recuit trop basse ——Augmenter la température de recuit de manière appropriée

    A-6 Cycles

    ——Trop de cycles ——Optimiser le nombre de cycles

    Q : Quelle quantité d'ADN matrice doit être ajoutée dans un système de réaction PCR de 50 ul ?
    ytry
    Q : Comment amplifier de longs fragments ?

    La première étape consiste à choisir la polymérase appropriée. La polymérase Taq régulière ne peut pas relire en raison du manque d'activité de l'exonucléase 3'-5', et le mésappariement réduira considérablement l'efficacité d'extension des fragments. Par conséquent, la polymérase Taq normale ne peut pas amplifier efficacement les fragments cibles de plus de 5 kb. La polymérase Taq avec une modification spéciale ou une autre polymérase haute fidélité doit être sélectionnée pour améliorer l'efficacité d'extension et répondre aux besoins d'amplification de fragments longs. De plus, l'amplification de longs fragments nécessite également un ajustement correspondant de la conception de l'amorce, du temps de dénaturation, du temps d'extension, du pH du tampon, etc. Habituellement, les amorces avec 18-24 pb peuvent conduire à un meilleur rendement. Afin d'éviter d'endommager la matrice, le temps de dénaturation à 94°C doit être réduit à 30 secondes ou moins par cycle, et le temps d'élévation de la température à 94°C avant l'amplification doit être inférieur à 1 min. De plus, le réglage de la température d'extension à environ 68°C et la conception du temps d'extension en fonction de la vitesse de 1 kb/min peuvent garantir une amplification efficace de longs fragments.

    Q : Comment améliorer la fidélité d'amplification de la PCR ?

    Le taux d'erreur de l'amplification PCR peut être réduit en utilisant diverses ADN polymérases avec une haute fidélité. Parmi toutes les ADN polymérases Taq trouvées jusqu'à présent, l'enzyme Pfu a le taux d'erreur le plus bas et la fidélité la plus élevée (voir tableau ci-joint). En plus de la sélection d'enzymes, les chercheurs peuvent réduire davantage le taux de mutation PCR en optimisant les conditions de réaction, notamment en optimisant la composition du tampon, la concentration de polymérase thermostable et en optimisant le nombre de cycles de PCR.

    Écrivez votre message ici et envoyez-le nous